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Abstract 

Synthetic Aperture Radar (SAR) has emerged as a new tool for tropical cyclone (TC) 

monitoring by providing information on the location of TC centers. However, SAR 

does not usually cover the entire TC domain due to its limited swath width. In this 

study, we develop a procedure to identify the location of the center of a TC when a 

SAR image only covers the rainband portion of the TC but not the eye. The algorithm 

is based on both an image processing procedure and the available knowledge of the 

inherent rainband structure of a TC. The three-step algorithm includes: (1) applying a 

Canny edge detector to find the curves associated with rainbands; (2) defining two 

filter criteria to select the spiral curves that resemble the estimation based on a TC 

rainband model; and (3) searching for the optimal matching solution using the Particle 

Swarm Optimization Algorithm (PSOA). Numerical experiments with images without 

TC eye information show that the proposed method can effectively locate the centers 

of TCs. We compare the experiment results with the Best Track Data to indicate the 

accuracy. Then we compare inflow angle model and the logarithmic spiral model, and 

find that the inflow angle model is more accurate for TC center identification. 

Key words: Synthetic aperture radar, storms, pattern matching, filtering 

1. Introduction 

A tropical cyclone (TC) is a severe weather system that can lead to the loss of life and 

cause economic loss in coastal areas. TC tracking and intensity forecasting are the 

main tasks of operational meteorological agencies worldwide. Among the many TC 

parameters, the TC center location provides key information in monitoring and 

forecasting a TC’s path and intensity. The accurate identification of a TC center 

location in real time will help TC forecasting. 

Synthetic aperture radar (SAR), an active microwave sensor, has emerged as a new 

tool for TC monitoring and forecasting in recent years due to the increasing number 

SAR satellites in orbit. SAR radar pulses can penetrate through clouds and images the 

footprint of a TC with high spatial resolution (1 to 100 m) under all-weather 
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conditions, day and night [1-3]. In addition, the sea surface roughness imaged by SAR 

can be inverted to sea surface wind, wave, and rain fields using existing geophysical 

model functions in both co- and cross-polarization configurations [4-8]. With the 

increasing number of available SAR satellites, especially the most recent Sentinel-1A 

[9, 10] and -1B [11], SAR imagery has drawn increasing attention as an emerging tool 

for monitoring and forecasting TCs. 

TC eye extraction from SAR imagery is an important research topic. In the literature, 

Du and Vachon proposed a wavelet analysis method to extract TC eye shape in SAR 

images [12]. Recently, Jin et al. [13] developed algorithms based on a labeled 

watershed segmentation method and morphological analysis to extract hurricane eyes 

in SAR images. Lee et al. [14] extracted hurricane eyes from C-band SAR data based 

on a mathematical morphology method and discrete skeleton evolution. The two 

studies both compared their automatic TC eye extraction results with the manually 

extracted tropical cyclone morphology results from 85 SAR images systematically 

analyzed by Li et al. [1]. All the studies illustrate the potential of SAR in TC 

monitoring, but they targeted SAR imagery containing the entire TC system with 

obvious complete eyes. Although most well-developed TCs have complete eyes, other 

TCs at the developing or declining stages often do not have obvious eye structure. 

Moreover, SAR, due to its limited coverage, sometimes only covers part of a TC eye. 

Locating the centers of these types of TCs has not been fully addressed in the 

literature. 

Traditionally, weather forecasters manually track the center and the rainbands of TCs 

using a time series of visible and IR satellite images. Sometimes, forecasters overlay a 

spiral template on a satellite image to find the best matching pattern so that they can 

determine the center of a TC by calculating the center of the best matched standard 

logarithmic spiral [15]. However, the center location results determined by these 

manual methods are subject to human errors.  
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In contrast to manual approaches, automatic methods can objectively locate a TC 

center on a SAR image costing less time. Numerical models usually use the lowest 

pressure to locate the TC center automatically, which need a sequence of images. 

Pattern matching method is another kind of methods which only need a single image. 

Wang et al. (2006) developed an auto-location of the center of a developing tropical 

cyclone based on image segmentation, mathematical morphology and Hough 

transform algorithm [16]. Wong and Yip (2008) proposed a method to fix the eye of a 

TC using a genetic algorithm with radar reflectivity data and temporal information 

[17-18]. Xu et al. (2009) proposed a spiral rainbands segmentation method by 

transforming it to a problem of classification using a support vector machine [19]. To 

our knowledge, no study has focused on using the pattern matching method to locate a 

TC center on a SAR image that does not contain a TC eye. 

Recently, Jin et al. (2017) proposed a salient region detection and pattern 

matching-based algorithm for center detection of a partially covered tropical cyclone 

in a SAR image [20]. It is a semi-automatic center location method for partially 

covered TCs in SAR images. Rainbands of a TC are extracted using a salient region 

detection algorithm. Then the skeleton lines of rainbands are extracted using 

mathematical morphology. At last the PSOA and the inflow angle model are used 

estimate the TC center. Experiments demonstrate that this method can correctly locate 

a TC center in a SAR image with good accuracy. It extracts rainbands based on the 

saliency of TC structure on a TC SAR image and works well for most images. But 

there are several parameters need adjusted to extract rainbands correctly. Then 

rainbands are selected and skeleton lines are extracted by adjusting a few parameters. 

The artificial tuning will increase subsequently center location errors. Weather 

forecasts call for a more rapid method with less probability of error. 

Based on this analysis, in this study we propose an automatic TC center location 

method that can be summarized as a three-step scheme: (1) apply a Canny edge 

detection algorithm to find the rainband curves in a SAR image; (2) define two filter 

criteria based on the length of each rainband curve and the ratio between the distance 
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from the head to the end points and the length of each curve. The two filter criteria are 

used to select the spiral curves that resemble the results estimated from a published 

TC rainband model; and (3) transform the pattern matching problem into an 

optimization problem. A search for the optimal TC center solution is made by using 

the particle swarm optimization algorithm (PSOA). 

The remainder of this paper is as follows: in Section 2, we introduce the algorithm. In 

Section 3, we apply the algorithm to three Envisat SAR images and two Radarsat-1 

SAR images and one Sentine-1 SAR image to extract the TC center positions and 

compare our results with the logarithmic spiral model results. The discussions and 

conclusions are given in Section 4. 

2.  Locating the Center of TCs without Eyes based on PSOA 

Generally speaking, TCs can be divided into TCs with eyes and TCs without eyes. In 

SAR images, a TC with eye appears as a dark eye area surrounded by bright and dark 

spiral rainbands system. A TC eye, with obvious dark features, has several shapes, 

such as circular eye, concentric double circular eye, elliptical eye, half circular ring 

eye, irregular eye, broken eye, etc. Rainbands can be classified into spiral rainbands, 

asymmetric rainbands and quasi-circular rainbands. Rainbands are the main structure 

we can use for extracting centers of TCs without eyes in SAR images. 

Sometimes, a SAR image only covers part of a TC. This paper focused on developing 

a methodology to identify the TC center when a SAR image only covers the rainband 

portion of a TC. Another type of SAR image contains the TC eye but the eye structure 

is obscured. A TC tends to change its intensity when its eye becomes obscured. So, 

extracting the actual eye center in these situations is important. 

A. Pattern Matching Models 

Our automatic location of the center of a TC method adopts the pattern matching 

approach. With the help of a hurricane inflow angle model [21], and information 

extracted from the image (spiral curves) can be used to derive the actual TC center. 
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Here we choose an analytical near-surface (10 m) inflow angle model as a template to 

represent the TC surface wind structure to estimate the TC center. Because of the 

characteristic cyclonic flow near the sea surface in TCs, the documentation of 

observed surface wind directions is typically described in terms of surface inflow 

angles (α), which can be defined as the arctangent of the ratio of the radial to the 

tangential wind component (α = arctan (νr/νt)). Zhang and Uhlhorn [21] proposed a 

parametric model of inflow angle based on the analysis of near-surface inflow angles 

using wind observation data from over 1600 quality-controlled global positioning 

system dropwindsondes deployed by aircraft on 187 flights into 18 hurricanes. 

Analysis results indicate a statistically significant dependence of inflow angle on the 

radial distance from the TC center. The parametric model of inflow angle α in a TC 

can be provided by four parameters: the normalized radial distances (r*), the azimuth 

angle measured clockwise from storm motion direction (θ), the maximum wind speed 

(Vmax), and the storm motion speed (Vs). Of note, the maximum wind speed and the 

radius of Vmax are determined using the SAR derived wind speed, and Vs is determined 

based on the best track data. 

The inflow angle is defined as: 

max 0 max 1 max 1( , , , ) ( , ) ( , , ) cos ( , )SR s s sr V V A r V A r V V P r Va a aa θ θ ε∗ ∗ ∗ ∗ = + × − +   
(1) 

where ε is the model error. R* = r/Rmax, where r is the radial distance measured in a 

polar coordinate system, and Rmax is the radius of maximum wind speed. Aα0, Aα1, and 

Pα1 are defined as: 

0 0 0 max 0A A AA a r b V ca
∗= + +  (2) 

1 0 1 1 1( )A A s AA A a r b V ca a
∗= − + +  (3) 

1 1 1 1P P s PP a r b V ca
∗= + +  (4) 
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The coefficients (a,b,c) are shown in Table 1. As an example, Fig.1 shows the 

horizontal map of the surface inflow angle from Hurricane Earl (2010). The inflow 

angle was calculated using Eq. (1) along with parameters based on the SAR image 

taken on September 2 (Table 2). It is evident from Fig. 1 that the inflow angle is 

asymmetrically distributed with the largest values being located at the front-right 

quadrant. 

If we get a curve in a TC image, we can obtain all the pixels’ positions on the curve. 

The distance ri of one pixel (xi,yi) to the center (xc,yc) can be defined as: 

2 2(x x ) (y )i i c i cr y= − + −  (5) 

The normalized distance r*i can be defined as: 

2 2

2 2
max max

(x x ) (y )

(x x ) (y )
i c i c

i

c c

y
r

y
∗ − + −
=

− + −  (6) 

where (xmax,ymax) is the position of the maximal wind speed. The corresponding 

azimuth can be defined as: 

arctan( )i c
i

i c

y y
x x

θ −
=

−  (7) 

r* and θ can be determined if the center (xc,yc) of a TC and the position of the 

maximum wind speed are known. Therefore, the key to solving the matching problem 

is to find the best combination of parameters (xc,yc) that makes the inflow angles 

calculated from Eq. 1 best match those pixels on the rainband spiral curve. We can 

then transform the matching problem into an optimization problem. The optimum 

solution corresponds with the best match. 
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Another pattern matching model is the logarithmic spiral model. It was used in some 

literatures [16-18]. It can be defined as follows [26]: 

bae θρ =  (8) 

In a rectangular coordinate system, it can be formulated as: 

cos cos
{

sin sin

b

b

x ae
y ae

θ

θ

ρ θ θ
ρ θ θ

= =
= =  (9) 

The distance ρi of one point (xi,yi) on the spiral line to the center (xc,yc) and the 

corresponding included angle θi can be defined in Eqs. (5) and (7), respectively. If the 

center of a logarithm spiral is known, we can get parameters ρ and θ from Eqs. (5) and 

(7). If some points, (xi,yi) or (xj,yj) have been obtained, a and b in Eqs. (8) and (9) can 

be defined: 

ln lni j

i j

b
ρ ρ
θ θ
−

=
−  (10) 

i

i
ba

e θ

ρ
=

 (11) 

As a result, a logarithm spiral can be determined by two parameters (xc,yc) if some 

points on the curve have been obtained. Our aim is to find a logarithm spiral that best 

matches with the spiral pattern of rainbands. We use the PSOA to search the best 

matched logarithm spiral. The fitness function in Step 2 is modified to: 

2 2

1
(x x ae cos ) (y ae sin )

N
b b

i c i c
i

z yθ θθ θ
=

= − − + − −∑
 (12) 

The three-step proposed framework is shown in Fig. 2. 
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B. Spiral Curves Extraction using an Edge Detection Algorithm 

Rainbands usually have obvious geometrical spiral characteristics. The spiral 

information is an important feature that can be used for locating the center of a TC 

that does not have an obvious eye feature. Therefore, it is necessary to extract useful 

spiral lines without the interference of unrelated features for automatic center location 

with pattern matching methods. 

As a preprocessing procedure, we denoise the speckle noise in a SAR image. Speckle 

noise reduces the actual resolution of the SAR image, affects target identification and 

even causes some features to disappear in the image. A good de-noising algorithm 

should meet the following four criteria [22]: (1) remove the speckle noise effectively 

in the homogenous regions; (2) retain the edge and texture features as far as possible; 

(3) do not produce the pseudo Gibbs effect; and (4) maintain the radiation 

characteristics of radar images. Here we apply an extension of a non-local mean filter, 

the Probabilistic Patch-Based filter (PPB filter) that meets all 4 criteria to filter the 

speckle noise in SAR images [23]. The PPB filter is designed to smooth speckle noise 

in the homogeneous regions while preserving the edges and shapes at the same time. 

It is considered to be one of the best SAR image denoising methods. After denoising, 

the TC SAR images can be processed with little influence from speckle noise. 

When locating the center of TCs, image segmentation using pattern matching is the 

common extraction method for spiral curve extraction [16]-[19]. Rainbands are first 

segmented with image segmentation methods, i.e., threshold segmentation method. 

Then morphological methods such as corrosion and expansion are used to eliminate 

hollows and protrusions in the connected regions to ensure that the skeleton lines 

extracted in the next step are as smooth as possible. However, it is difficult to use a 

simple threshold segmentation method to accurately extract rainbands. Complex 

image segmentation algorithms such as the segmentation of typhoon spiral cloud 

bands based on the support vector machine greatly increase the computational cost 

[19]. Besides, several times of corrosion and expansion which are two basic 

mathematical morphology operators operated on images will change the shape of 
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rainbands. These processes will likely make the spiral curves obtained incomplete or 

inaccurate. Sometimes weather forecasters will draw along the trend of some 

rainbands manually when they need to extract spiral curves. This spiral curve edge 

detection algorithm greatly simplifies the operation steps and reduces the 

computational cost. 

We find that the Canny algorithm, a classical edge detection algorithm, is valid in 

locating rainband edges on a SAR image [24]. At first, a TC SAR image is filtered by 

a two-dimensional Gaussian function so that its noise is reduced. Then, the amplitude 

and direction of the gradient image is calculated with a first order differential operator. 

Error detected edges are deleted by the non-maximum suppression of gradient 

amplitude. At last, edges from the candidate edge points are detected and connected 

with a double threshold. 

In practical applications, affected by uneven illumination distribution or other factors, 

some TC SAR images may contain dark lines whose gradient characteristics are very 

similar to those of rainband edges. This will cause some meaningless edges in the 

final detected edge map. Generally, the gradient amplitudes of these dark lines are low, 

so we can set a small threshold when edges from the candidate edge points are 

detected and connected to label points whose gradient amplitudes are smaller than the 

threshold as non-edge points. This will avoid the contamination of dark lines. 

C.  Spiral Curves Selection with Two Filter Criteria 

The edges of rainbands can effectively represent the spiral shape. However, not all 

edges found by the edge detector represent the rainband spiral shape. A number of 

detected edges are either too short or too irregular to represent the spiral shape. 

Therefore, it is necessary to select useful edges that contain spiral information before 

the pattern matching in the next step. 

We choose two filter criteria to select spiral curves. Firstly, we calculate and rank the 

lengths of all the extracted edges, and only keep a few longest ones. Secondly, we 
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calculate the distance between the head and tail points of each remaining edge, and 

then calculate the ratio between the curve length and the distance between the head 

and the end points. If the ratio is too small, the curvature of the edge curve is small 

and not in spiral shape. If the ratio is too large, the curve may contain too many 

irregular shapes for pattern matching. Therefore, we set two thresholds T1 and T2 to 

keep only spiral-shape edges whose ratios are in between. In our experiments the two 

thresholds are set as the ratios between the arc and the distance from one end point to 

the other end point of the arc when the radians are 𝜋𝜋
6
 and 3𝜋𝜋

2
, respectively. 

D.  Center Location of TCs based on PSOA 

Given a spiral curve of a rainband obtained by the above two procedures, we can 

obtain all the pixels {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)|(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) ∈  𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠} on it. As described previously, we need 

to find the best estimated center (xcbest,ycbest) which makes the estimated inflow angles 

of pixels on the spiral curve closest to the actual inflow angles. So the key to solving 

the matching problem is to find the best combination of parameters (xc,yc). We take 

the matching problem as an optimization problem. The optimum solution corresponds 

to the best match. 

In the literature, the Hough transform [16] is usually used as a simple and easy pattern 

matching method. However, it performs well on only a portion of the matching pixels, 

not all the matching pixels. It is also difficult to reach a good matching result across 

the entire image due to its limitations, such as complex calculation and poor detection 

performance when there is noise in an image. Wong et al. [18] used a genetic 

algorithm to match skeleton lines with a logarithm spiral model. The genetic 

algorithm is robust and has global search ability. However, crossover and mutation 

operators of the genetic algorithm guide the search iterative process randomly. So 

they provide the opportunity to evolve but inevitably produce the possibility of 

degradation at the same time. There will be a lot of redundant iterations when the 

solution reaches a certain range, resulting in the low efficiency of exact solutions. 
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The Particle Swarm Optimization algorithm (PSOA) is a method for optimization of 

continuous nonlinear functions [25]. It is simple and effective with fewer parameters 

than the genetic algorithm. The calculation quickly converges to the optimal solution. 

These advantages make PSOA widely used in solving optimization problems. In this 

study, we choose the PSOA to search the optimum solution to solve the matching 

problem. 

The PSOA is based on research around birds’ predation [25]. Researchers have found 

that the behavior of a flock of birds in flight is not predictable, and they will often 

suddenly change direction, spread, and so on. However, the whole flock always keeps 

consistency and they will keep the appropriate distance among birds. Based on the 

research on the behavior of such groups, researchers found that there is a kind of 

social information sharing mechanism which provides an advantage for the evolution 

of the group. This is the basis of the formation of the PSOA. Suppose there is a group 

of birds looking for food randomly. Every bird can be seen as a solution in the PSOA’ 

solution space, which is also called a particle. If there is only one piece of food, the 

easiest but most effective strategy for finding the food is to search the surrounding 

area of the bird that is nearest to the food. Each bird adjusts its flight direction and 

speed according to its own flight experience and other birds’ flight experience. The 

best position for a bird in flight is the best solution for the bird itself, which can be 

called pbest. The best position of the whole group is the best solution to the whole 

group, which can be called gbest. There is a fitness value z determined by an 

optimization function. Every bird follows the current optimum particle to search for 

its best position in the solution space. If a better solution is found, the current 

optimum bird’s position and speed are replaced. The process repeats until the 

optimum solution is reached. 

Combined with the binary image of skeleton lines of rainbands, the PSOA is used to 

find the best center (xcbest,ycbest) from which we can obtain the inflow angles that are 

closest to the given model inflow angles. In the experiments, a binary image of spiral 

curves is input. We count the number of curves and get all the pixel positions of each 



12 

spiral curve. As shown in Fig. 3, the following three steps are operated for each 

skeleton line: 

Step 1: Initialize the position and speed of the original searching particle (pixel 

samples on a skeleton line). The original position of each particle can be considered 

as its original pbest. Calculate the corresponding fitness value of each particle. The 

best fitness value is considered as the global fitness value. The position of the particle 

having the best fitness value can be considered as the original gbest. 

A matching result can be evaluated by the deviations of the given inflow angle and the 

corresponding evaluated inflow angle. The smaller the deviation is, the better the 

overlapping is. So the fitness function is defined as: 

0 max 1 1
1

z { ( , ) ( , ) cos ( , ) }
i

N

SR i i s i i s
i

A r V A r V P r Va a aa θ ε∗ ∗ ∗

=

 = − + × − + ∑  (13) 

Step 2: Calculate the fitness value of each particle. If the fitness value of one particle 

is better than the current pbest, update the current pbest. If the best pbest of all 

particles is better than the current gbest, update the current gbest. The speed and 

position of each particle can then be changed following formula (14) and formula 

(15): 

𝑣𝑣𝑖𝑖+1 = 𝑤𝑤 ∙ 𝑣𝑣𝑖𝑖 + 𝑐𝑐1 ∙ 𝑟𝑟1 ∙ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖) + 𝑐𝑐2 ∙ 𝑟𝑟2 ∙ (𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖) (14) 

𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖+1 = 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 + 𝑣𝑣𝑖𝑖+1 (15) 

Where c1 and c2 are acceleration coefficients, and r1 and r2 are random numbers 

between 0 and 1. 

Step 3: If the iterative time has reached the preset maximum number or the result has 

reached the minimum error, iteration stops and the optimum solution is provided. 

Otherwise, go to step 2. 
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The optimum solution of (xc,yc) from PSOA calculation is considered as the estimated 

center of the TC. Sometimes there may be several spiral lines after skeleton lines 

extraction. Each spiral line has an optimal solution. Theoretically, there is a center 

point which is the compromise optimal solution for all the spiral lines. So we take the 

average of all the optimum as the final center point. 

3.  Experimental Results 

The data used in this paper are three Envisat TC SAR images, two Radarsat-1 TC 

SAR images, and one Sentine-1 TC SAR images (Fig. 4). The Envisat SAR images 

were acquired in wide swath mode (WSM) with a medium resolution of 150 m and a 

swath of 405 km. The Radarsat-1 SAR images are ScanSAR wide beam (SCW) 

images with a medium resolution of 100 m and a swath of 500 km. The Sentine-1 

SAR image is an Extra Wide Swath (EW) image with a resolution of 20 m × 40 m. 

Detailed information about these images is given in Table 2. The images of TC Talim 

and TC Earl contain a complete TC structure. The images of TC Gustav and TC 

Gaston contain the TC eye and a part of the rainband. These images originally 

contained entire eyes. To demonstrate the effectiveness of our algorithm, we 

purposely removed the eye regions before applying the algorithm. The image of TC 

Franklin contained a fuzzy eye area, and the image of TC Karl contained no eye. 

Figs. 5(a)–10(a) show the denoised SAR images of TCs. As shown in these figures, 

the PPB filter can effectively restrain speckle noise and preserve the texture and the 

edge information at the same time, being conducive to the following edge extraction. 

Figs. 5(b)–10(b) show the edge maps after Canny edge detection. Each edge map 

contains edges of the general outline of a TC and some local spiral curves. However, 

the edge maps also contain edges of irrelevant patterns and some small disconnected 

edge lines. As shown in Fig. 11, some of these edge lines are too straight, too short, or 

too complicated in shape. These edges do not reflect the spiral shape and rotation 

characteristics of TCs. We selected these edges useful for extracting spiral shapes 

following the two filter criteria described in Section 2.2. Here the two thresholds are 

the ratios between the arc and the distance from one end point to the other end point 
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of the arc when the radians are π
6
 and 3𝜋𝜋

2
, respectively. Figs. 5(c)–10(c) show the 

selected edge maps. It can be seen that the remaining curves after selection contain 

spiral information and are long enough for pattern matching in the following 

procedure. 

With the selected spiral curves, we transform the matching problem into an 

optimization problem and use the PSOA to search the optimal solution. Each optimum 

solution corresponds to an estimated center of the TC. If there are several spiral 

curves in a selected edge curves map at the same time, we will get several optimum 

solutions for one TC image. The center points obtained after matching have deviations, 

so the TC center can be considered as the mean of these points. The parameters in our 

experiments are set as follows: 𝑐𝑐1 = 𝑐𝑐2 = 2 and  𝑟𝑟1 = 𝑟𝑟2 = 1, and the maximum 

velocity of particles is 5. The population size is set to 20 and the evolution time is set 

to 200. The red points in Figs. 5(d)–10(d) are the final obtained center of the TC. Here 

we didn’t discuss the eccentricity of the TC eye. We suppose that the TC center is 

within the eye area. It can be seen from Figs. 5(d)–8(d) that the TC center matches the 

real TC eye. The TC eye in Fig. 9(d) is within the fuzzy eye area. 

To evaluate the accuracy of our center location results, we compare the estimated 

center with the NOAA Best Track Data sets in Table 3 and Fig. 12. The NOAA Best 

Track Data is obtained from NOAA’s program “International Best Track Archive for 

Climate Stewardship (IBTrACS)”. It is updated every 6 hours, which contain the 

center position (usually it is the latitude and longitude) and the intensity (described by 

the maximum wind speed or the lowest central air pressure) of a TC at a certain time 

and other information. The locations of the TC centers in the SAR imaging times are 

interpolated from the two nearby Best Track data records. The estimated center 

position of a TC should be between the center positions at the two recorded times. 

Table 3 shows each estimated center’s position and the two center positions on the 

two above recorded times in the best track data set. Using linear interpolation, we 

draw a straight line between the center positions before and after the time that each 
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SAR image was captured. Then we point out the estimated center position in the same 

figure. Theoretically the estimated center position should be on the line. We can see in 

Fig. 12 that the estimated centers of TCs Talim, Gustav, and Gaston are almost on the 

straight lines, and those of TCs Earl and Karl are close to the straight lines. However, 

the estimated center position of TC Franklin is far away from its straight line, and its 

longitude and latitude are a little out of the range. These samples illustrate that our 

method is effective and accurate in most cases. 

We then provide a comparison between the logarithmic spiral model and the inflow 

angle model. A set of estimated TC centers in a SAR image obtained with the inflow 

angle model and the logarithm spiral model is shown in Table 4. We can see that the 

centers estimated with the inflow angle model are relatively close to each other. The 

biggest distance from one estimated center to the average center is no more than 

5 pixels. However, the centers estimated with the logarithm spiral model are discrete, 

and the biggest distance from one estimated center to the average center can be more 

than 50 pixels. Although the final average result is more or less the same, some 

estimated points obtained with the logarithm spiral model are outliers. While the 

volute tendency of the rainbands appears spiral, the shapes are various, and not all the 

rainbands conform to the volute tendency of the logarithmic spiral. So matching the 

rainbands with the logarithmic spiral model is limited, and the matching performs 

well for some but not all TCs. The inflow angle model is more robust and accurate 

than the logarithm spiral model. One issue with the inflow angle model is that we 

need to know the actual inflow angles of required points of a TC and its maximum 

wind speed when we apply the model. However, the results show that we can also use 

the average inflow angle when the inflow angles of each point are unknown. This can 

also achieve accurate results, although the results may be not as accurate as the results 

obtained with the actual inflow angles of each point.  
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4.  Conclusions 

The automatic location of the center of TCs, especially the automatic location of TCs 

without eyes, is an important task in typhoon monitoring. Based on the characteristics 

of TCs in SAR images, we propose a method based on rainband pattern matching and 

the PSOA to automatically locate center of a TC without an eye in a SAR image. We 

show experiment samples containing three Envisat TC SAR images, two Radarsat-1 

TC SAR images, and one Sentinel-1 TC SAR image to validate our method. These 

samples contain two kinds of TCs: a SAR image showing the complete structure of a 

TC and a SAR image showing part of a TC. The experimental results show the 

accuracy of our method. We then  compare the inflow angle model with the 

logarithm spiral model and experimental results show that the inflow angle model is 

more robust and accurate than the logarithm spiral model. 

The method in reference [20] proposed a complex visual saliency method containing 

several steps to obtain the curves suitable for pattern matching. These steps all need 

adjusted parameters. The method needs a large amount of calculation and is 

time-consuming. Different from the salient region detection method [17], the edge 

detection method in this paper greatly simplifies the calculation for obtaining the 

spiral line with fewer parameters. This will reduce the error and greatly improve the 

computational efficiency. A Canny detector is a classical algorithm, which is easy to 

operate with fewer parameters. The inflow angle model is proposed based on the 

analysis of observational data. It is suitable for many TCs but not all TCs. In addition, 

the initialization of particles and the change strategy of particle positions of the PSOA 

will both affect the optimization results. This makes the experiment results more or 

less depending on subjective experience. It is an issue to find a more effective method 

and to select curve lines of rainbands in a future work.  
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Table 1.  Coefficients for the inflow angle model. 

Equation Variables a b c 

(2) A -0.90 -0.90 -14.33 
a 0  

(3) A 0.04 0.05 0.14 
a1  

(4) P 6.88 -9.60 85.31 
a1  

 

Table 2.  Detailed information about TC SAR images. 

TC Time Satellite Polarization Band Mode Resolution 

Talim 2005.08.30 Envisat VV C WSM 150 

Earl 2010.09.02 Envisat VV C WSM 150 

Gustar 2008.09.01 Envisat VV C WSM 150 

Gaston 2016.08.30 Sentine-1 VV C EW 20 

Franklin 2005.07.28 Radarsat-1 HH C SCW 100 

Karl 2004.09.20 Radarsat-1 HH C SCW 100 
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Table 3. Estimated centers with our method and centers from the best track data set records before and 
after the time that SAR images are captured. 

Estimated Best Track Best Track 
Tropical Center  UTC Time  Center  UTC Time Center 
Cyclone UTC Time (Lat, Lon) Before (Lat, Lon) After (Lat, Lon) 

2005.08.30 2005.08.30 2005.08.30 
Talim (21.5,129.3) (21.4,129.7) (21.7,128.5) 

01:24:30 00:00:00 06:00:00 
2010.09.02 2010.09.02 2010.09.02 

Earl (30.9,-74.9) (30.1,-74.8) (31.7,-75.1) 
15:01:25 12:00:00 18:00:00 

2008.09.01 2008.09.01 2008.09.01 
Gustav (27.4,-88.4) (26.9,-87.7) (27.9,-89.0) 

03:56:50 00:00:00 06:00:00 
2016.08.30 2016.08.30 2016.08.30 

Gaston (32.1,-53.2) (32,-53.5) (32.4,-52.5) 
14:45:12 12:00:00 18:00:00 

2005.07.28 2005.07.28 2005.07.29 
Franklin (38.0,-67.6) (37.1,-68.0) (38.4,-66.6) 

22:16:05 18:00:00 00:00:00 
2004.09.2 2004.09.20 2004.09.2

Karl (17.0, -45.3) (17.0, -45.2) (17.5, -46.0) 
0 08:56:44 06:00:00 0 12:00:00 

 
 
Table 4. The set of TC centers estimated with the inflow angle model and the logarithm spiral 
model. 

 Experiments with Inflow Angle Model Experiments with Logarithm Spiral Model 

 ( )xc best  ( )yc best  ( )xc best  ( )yc best  

 732.6795 600.0751 751.3455 576.6757 

 730.6201 596.7512 722.5519 541.8418 

 732.1334 599.7162 764.4380 571.6392 

 729.3550 594.1986 710.3034 551.5651 

 732.6288 599.7210 767.6173 559.4478 

 733.4454 598.3882 775.5809 562.1592 

 732.5794 600.4000 766.5757 579.7024 

 733.8792 601.0111 771.7417 578.7290 

 732.4486 598.8011 749.0303 571.4776 

 732.3128 599.5379 782.2646 565.7211 

average 732.2082 598.8600 756.1449 565.8959 
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Fig. 1. 2D Plot of the surface inflow angle as a function of distance to the storm 
center based on information of the SAR image taken on September 2, 2010.  
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Image denoising as 
preprocessing procedure

Canny edge 
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Fig. 2. The framework of center location of TCs without eyes with our method.  
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Image I with the 
spiral curve

Initialize The particle (xc,yc) and 
calculate the fitness value z to initialize 

gbest and zbest

Update the particle 
(xc,yc) and its position 

and speed

Calculate the fitness 
value z

Find the optimal 
solutionEnd 

Start 

Yes

No 

Fig. 3. Scheme of the PSOA.  
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Fig. 4. The TCs shown in the paper and their geographical positions.  
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Fig. 5. The results for TC Talim. (a) The denoised SAR images of TC Talim without 
eye. (b) The edge maps after Canny edge detection. (c) The selected edge curves maps. 
(d) The estimated center of TC Talim shown on the original SAR image.



27 

 

Fig. 6. The results for TC Earl. (a) The denoised SAR images of TC Earl without eye. 
(b) The edge maps after Canny edge detection. (c) The selected edge curves maps. (d) 
The estimated center of TC Earl shown on the original SAR image.  
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 （d）（c）

（b）（a）

Fig. 7. The results for TC Gustav. (a) The denoised SAR images of TC Gustav 
without eye. (b) The edge maps after Canny edge detection. (c) The selected edge 
curves maps. (d) The estimated center of TC Gustav shown on the original SAR 
image.  



29 

 

Fig. 8. The results for TC Gaston. (a) The denoised SAR images of TC Gaston. (b) 
The edge maps after Canny edge detection. (c) The selected edge curves maps. (d) 
The estimated center of TC Gaston shown on the original SAR image.  
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Fig. 9. The results for TC Franklin. (a) The denoised SAR images of TC Franklin. (b) 
The edge maps after Canny edge detection. (c) The selected edge curves maps. (d) 
The estimated center of TC Franklin shown on the original SAR image.  
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Fig. 10. The results for TC Karl. (a) The denoised SAR images of TC Karl. (b) The 
edge maps after Canny edge detection. (c) The selected edge curves maps. (d) The 
estimated center of TC Karl shown on the original SAR image.  
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Fig. 11. Select curves which can be used for effective pattern matching. (a) In the red 
rectangle frames, some curves are too short, some look like straight lines, and some 
are complex. (b) In the red rectangle frame, after length selection, there are still 
curves whose shapes are complex. So we need select again.  
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Fig. 12. The position of each estimated center and the straight line between the center 
positions in the best track data sets recorded before and after the time that the SAR 
images are captured. Fig.12.(a) –(f) corresponding to Fig.4.(a)-(f),respectively. 
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